翻訳と辞書
Words near each other
・ Feick Building
・ Feidias Panayiotou
・ Feidlimid
・ Feidlimid mac Coirpri Chruimm
・ Feidlimid mac Tigernaig
・ Feidlimid mac Óengusa
・ Feidong County
・ Feieragu River
・ Feiern
・ Feifei Yang
・ Feig
・ Feige
・ Feige 55
・ Feigeana
・ Feigenbaum
Feferman–Schütte ordinal
・ FEFF8
・ Feffernitz
・ Fefita la Grande
・ FEFLOW
・ Fefo
・ Fefor
・ Feforvatnet
・ Fefu and Her Friends
・ FEG
・ FEG AP9
・ FEG Model 58
・ Feg Murray
・ FEG PA-63
・ Fegan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Feferman–Schütte ordinal : ウィキペディア英語版
Feferman–Schütte ordinal
In mathematics, the Feferman–Schütte ordinal Γ0 is a large countable ordinal.
It is the proof theoretic ordinal of several mathematical theories, such as arithmetical transfinite recursion.
It is named after Solomon Feferman and Kurt Schütte.
It is sometimes said to be the first impredicative ordinal, though this is controversial, partly because there is no generally accepted precise definition of "predicative". Sometimes an ordinal is said to be predicative if it is less than Γ0.
Unfortunately there is no standard notation for ordinals at and beyond the Feferman–Schütte ordinal, so there are several ways of representing it, some of which use ordinal collapsing functions: \psi(\Omega^\Omega), \theta(\Omega) or \phi_\Omega(0)
==Definition==
The Feferman–Schütte ordinal can be defined as the smallest ordinal that cannot be obtained by starting with 0 and using the operations of ordinal addition and the Veblen functions φα(β). That is, it is the smallest α such that φα(0) = α.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Feferman–Schütte ordinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.